长篇影评
1 ) 关于门,汽车,羊的延伸
关于电影里那个有名的概率论的问题,之所以很多人认为是错的,那是因为被自己的直觉误导了。
其实我们可以来计算一下,参赛者在主持人第二次询问是“坚持自己的选择”还是“更换选择”两种情况的胜率。
设事件“不换”胜率为P1,事件“更换”为P2。
“不换”获胜的条件很简单,就是第一次就抽中羊,所以P1=1/3=33%。
“更换”获胜的条件也很简单就是第一次抽中羊,因为主持人会打开另一扇后面是羊的门,所以就只剩下车子了。所以第一次无论抽中哪只羊都无所谓,P2=2/3=66.7%。
--------------------------
以上的计算人家已经算过了,我们来算点不一样的。
现在我们给题目加上一只羊,也就是一共有4扇门,后面是一辆车,三只羊。主持人同样在参赛者选择一扇门之后,打开一扇有羊的门,再问参赛者是坚持“不换”,还是“更换”。同样设为概率P1、P2。
P1=1/4----(第一次抽中车)
P2=3/4(第一次抽中羊)*1/2(在剩下的两扇门里选中羊)=3/8
至于为什么剩下两扇门应该不用解释吧,第一次选了一扇,主持人排除了一扇,所以剩下4-2=2扇。
P2>P1,所以应该“更换”。
----------------------------
如果再加一只羊,也就是1车,4羊。
P1=1/5=3/15
P2=4/5*1/3=4/15
P2>P1,所以还是要”更换“
-------------------------
.
.
.
.
.
.
加了很多很多羊之后,总共有N扇门,其中车1辆,羊N-1只。
P1=1/N
P2=(N-1)/N * 1/(N-2)=(N-1)/N(N-2)
P2-P1=(N-1)/N(N-2)-1/N=(N-1)/N(N-2)-(N-2)/N(N-2)=1/N(N-2)>0
所以P2>P1,需要”更换“。
-------------------------------------------
我已经很无聊了,有没有人在此基础上再加几辆车什么的!!!
2 ) 我写的一个21点模拟分析
这个电音很赞啊,男主很帅,女主差点但也不错。看了别人写的分析二十一点的记牌算法很受启发。但心中还是有个疑问:如果玩家按照最优的决策方案玩牌,在不计牌的冷热情况下,玩家的胜率究竟是多大?会是50%么?为此写了一个小程序做了下模拟运算。
(这个分析不考虑桌面已有牌对于后续牌的影响,也就是说假设新出的牌从A到K出现的概率都是1/13,同时还假设当双方同时出现21点的情况时,玩家获胜)
首先定义“正确的决策方案”。当玩家手中的牌达到12点及以上时,玩家就要开始做出选择,究竟继续叫牌还是停止。
在N点上停止抓牌获胜的概率是:庄家在N点及以下所有点数抓爆的概率总和。比如玩家有14点,并停止抓拍,他获胜的可能就是:庄家在12点抓爆的概率+13点抓爆的概率+14点抓爆的概率
在N点上继续抓牌(只抓一张)获胜的概率是:玩家抓到每张不会冒的牌a的概率乘以庄家在N+a点及以下抓爆的概率。比如庄家在14点时选择继续抓牌,他获胜的概率是:
(玩家抓A的概率*(庄家在15点抓爆的概率+玩家在14点抓爆的概率))+
(玩家抓2的概率*(庄家在16点抓爆的概率+玩家在15点抓爆的概率+庄家在14点抓爆的概率)+……+
(玩家抓7的概率*(庄家在21点抓爆的概率+玩家在20点抓爆的概率+……+玩家在12点抓爆的概率))
在这里,庄家在N点抓爆的概率的含义是:如果庄家一直抓牌,直到抓爆为止,在抓爆之前的点数为N。N为特定数出现的概率为多少。这个数值可以通过计算机模拟运算近似生成。通过一千万次模拟,得出的结论是:
N = 12: P(12) = 0.030543
N = 13: P(13) = 0.0438322
N = 14: P(14) = 0.0569275
N = 15: P(15) = 0.0711665
N = 16: P(16) = 0.0864059
N = 17: P(17) = 0.102366
N = 18: P(18) = 0.1193312
N = 19: P(19) = 0.1372943
N = 20: P(20) = 0.2131834
N = 21: P(21) = 0.13895
注:当庄家出现21点时,仍然需要抓牌,表示此时玩家已经出现21点,庄家已经必输。在所有抓爆的情况中,在21点处抓爆的概率为12.895%
利用以上的数据,根据上面的公式可以分析出最优的决策方案:
if you get 12 and you stop, your chance to win is 0.0304902
If you get 12 and you continue, your chance to win is 0.31595218
if you get 13 and you stop, your chance to win is 0.07414
If you get 13 and you continue, your chance to win is 0.23902911
if you get 14 and you stop, your chance to win is 0.1311739
If you get 14 and you continue, your chance to win is 0.17278956
if you get 15 and you stop, your chance to win is 0.20239449
If you get 15 and you continue, your chance to win is 0.12294503
if you get 16 and you stop, your chance to win is 0.28873807
If you get 16 and you continue, your chance to win is 0.083663836
if you get 17 and you stop, your chance to win is 0.39118338
If you get 17 and you continue, your chance to win is 0.053572804
if you get 18 and you stop, your chance to win is 0.5106556
If you get 18 and you continue, your chance to win is 0.031362183
if you get 19 and you stop, your chance to win is 0.6479789
If you get 19 and you continue, your chance to win is 0.015793376
if you get 20 and you stop, your chance to win is 0.861114
If you get 20 and you continue, your chance to win is 0.0057030767
if you get 21 and you stop, your chance to win is 1.0
If you get 21 and you continue, your chance to win is 0.0
由此可知,当玩家手里的牌小于15点时,需要继续叫牌,否则停止。
最后是再次进行模拟,找到依据最优决策方案得到的获胜概率。
模拟的次数依然是一千万次,最终的结果是:
if you followed the right method, your chance to win is 0.45998985
也就是说,玩家正常的胜率只有46%。如果按照电影中的算法,算牌的点数每增加一点,玩家获胜的概率增加0.5%,那么点数至少需要达到8点以上才能算是热牌。然而即使点数达到了18点超级热牌,玩家的胜率也只有55%,呃。。。所以说靠技术赚大钱还是很难的。
3 ) 车与羊三扇门概率问题的最简单解释
简单阐述一下问题:
一个游戏:有3扇关闭着的门,其中2扇门后面各有一只羊,另一扇门后面有一辆车。
参与者:一个游戏者和一个主持人。主持人事先知道各扇门后的物品,而游戏者不知道。
游戏目的:游戏者选择到车。
游戏过程:1、游戏者随机选定一扇门;2、在不打开此扇门的情况下,主持人打开另一扇有羊的门。3、此时面对剩下2扇门,游戏者有一次更改上次选择的机会。
问题是:游戏者是否应该改变上次的选择,以使选到车的概率较大?
答案:
不改变选择,得到车的概率是1/3。
改变选择,得到车的概率是2/3。
解释:
1、若想不改变选择选到车:
第一步:概率问题:
若不改变选择,要选到车,则游戏者必须第一次就选中车。此时选中车的概率是1/3(原理详见中学数学课本)。
第二步:必然问题:
因为游戏者不会改变选择,所以,之后主持人的任何行为——开门也好关门也好敲门也好摔门也好——都与游戏者最初做出的选择无关。
最终:概率还是1/3。
2、若改变选择选到车:
第一步:概率问题:
若要通过改变选择选到车,则游戏者必须第一次选中的是羊。此时选中羊的概率是2/3(原理详见中学数学课本)。
第二步:必然问题:
之后,主持人会打开另一扇有羊的门。此时游戏者面对剩下的2扇门,改变选择的方式只有一种,就是选上次没有选的那扇门。(这之中没有几分之几概率的存在。打个简单比方,一个包子和一个馒头放在你面前,你第一步先拿了个包子在手上;然后第二步我叫你“换一个拿”,显然你只能选剩下的那个馒头。在第二步中,你并没有选择包子或馒头的机会。)
最终:选到车的概率还是2/3。
--------------------------------------
这个问题很早以前看到过,当时算了好半天,现在却忘记了当时算的结果。今晚在豆瓣看到一些评论和讨论,总觉得都说的很复杂拖沓,说实话绕来绕去大多我都没怎么看明白。。于是自己静坐了一会想到了这样的一个理解方法。
标题中厚颜无耻的用了“最简单解释”几个字,这只是我能想到的最简单理解方法,大家若有更好的方法,也请提出,欢迎讨论。
要注意的是,这已经是一个有正确答案的题目了,对1/3和2/3答案有怀疑的各位童鞋,还是先去怀疑怀疑自己吧。
事情在自己脑海中想的很简单,化为文字就显得很臃肿拖沓了。短短的这么点字,花了20多分钟删删改改,力求简单明快,但比起思维的流畅还是差了很多。高考91分的语文成绩还是凸显了我语言表达的不足么-。-
似乎很久没有思考过这样的数学问题了,现在觉得脑子清爽很多。
最后,这电影我还没看呢,评价3星是因为,这是对整体评价影响程度最低的选择。
4 ) In vegas, you can become anyone you want.
如果你想远离真实的世界, 请去夏威夷, 因为那里与世隔绝, 能让你忘了一切. 如果你想远离真实的自己, 请去维加斯, 因为在那里你可以成为任何你想成为的人.
我第一次知道维加斯, 是看了小部分的逃离拉斯维加斯, 有两个场景, 一是一个号称处男的大学生和女主角搞, 旁边他的朋友在拍. 二是凯奇死去的那一幕, 看着他的眼睛, 我好象了解了什么是真正的绝望. 我脑子里从此对维加斯有了这样一个印象: 一个令人醉生梦死的城市.
世界上需要有这样一个地方, 东邪西毒的时代, 没有维加斯, 就有了那一坛醉生梦死酒, 喝了以后, 可以令人忘掉以前做过的任何事. 也许并不能说没有醉生梦死过的人生是不完整的人生, 但如果你有如此的人生经历, 它会让你变得与众不同.
Ben就是这样, 他被维加斯的那个自己吸引了, 那种醉生梦死的感觉会令人无法自拔, 忘掉自己不愉快的过去大概是每个人都希望的, 可是正是那些不堪回首的过去令每一个人变成了独特的个体. 从加入数牌小组开始, 到赚第一笔钱, 到已经不满足只赚够学费, 然后一次情绪的波动, 将自己赚来的钱一夜之间全输光, 再被教授出卖, 之后骗过了教授, 但赚来的钱又被一个强盗抢光. 再回到自己原来真实的世界中时, 他好象变得一无所有了. 其实, 很多时候, 生活的价值并不体现在具体的事物上. Ben也已经意识到了.
很奇怪地, 看电影的时候, 我觉得数牌的部分, 赌博的部分都很吸引人, 但留在脑海里的却是没用多少时间刻画的维加斯这个城市, 当我看完整部戏, 我不再觉得那只是个追求醉生梦死的人才会去的地方. 如果把电影重新剪接一下, 完全可以是一部另类的却非常能招揽游客的旅游宣传片.
怎么生活并不完全受自己控制的, 但怎么看待生活就在于自己了, 不是所有的生活经历都能象Ben那样拿来申请医学院的奖学金, 但都是为了让自己更加完整.
我特别享受我看完21后, 走出电影院时的感觉.
5 ) 八卦下我在法国时听到的真人版本
三年前在法国学旅游管理时,听了一堂课由摩纳哥赌场总经理上的课,讲的是和博彩业有关的东西。当时他和我们开玩笑说,你们进了赌场,我想让你们中谁赢,谁就能赢,想让谁输,谁就会输,意思是他们的“系统”很强大。不过他马上接了一句,说是也有人比“系统”更强大,就是一个数学家,他说那家伙过去几年里,每年就都坐游轮环游世界,跑到全球的几大赌场赌一把,赢了大把钱就走。这位高人据说就是算牌的,让众赌场损失严重。不得已,他们把那位高人列入了黑名单,每次他一出现,就会有人高马大的保镖把他架出去,到底会不会像电影里描绘得那样暴打一顿,我就不知道,估计还是不会。
6 ) 索然无味的大片,姑且当作青少年教育片看吧
昨天看了在北美曾经很火的影片的《决胜21点》,感觉是大失所望,浪费了我两个半小时。看预告片时候,有点像当年看《赌神》,《赌侠》 的感觉,非常high的,但是影片却使人大跌眼镜,剧情简单而且拖沓,节奏缓慢而且失控,帅哥还行,我当时误认为阿什利·库彻,至于所谓的片中的女主角就更不敢恭维,化个妆像个鬼一样,整个花瓶也不知道找个好的,不知道是导演审美有问题,还是我有眼无珠,难道国外也有“潜规则”?
但是凯文·史派西和劳伦斯·菲什伯恩的表演还是非常到位的。凯文·史派西在《美国丽人》中的表现给我留下了很深的印象,《七宗罪》里的变态杀手的表演也很到位,演个阴险狡诈的数学教授米基·罗沙对他来说小菜一碟,而劳伦斯·菲什伯恩他那极具杀伤力的暴力面孔,就算不说话也能很好地表达出角色的位置。
影片的后半段比前面的要精彩,导演似乎需要很多的情节作铺垫,为后面的爆发作准备,但这个酝酿期似乎太长了,使人有些疲惫,而且片中的疯狂赢钱的场面表现力缺乏力度。男女之间的爱情戏也不够烂漫,对我来说,主要女主角实在是太丑了,大煞风景。反正搞得没有重点,一个拼盘,什么都有。但都怎么好吃。如果非得打个比方的话,就像看一个A片,总看见男女在一起互相抚摸,看了很长时间,好不容看见女的脱衣服了,在这里就戛然而止,很不爽。但是后面的情节比起前面还是能给我们一些惊喜,比如筹码调包,米基·罗沙受骗被抓那段,还是有些好莱坞商业片大片的范儿。
一个麻省理工的高材生想进哈佛的医学院,但三十万美元的巨额学费让他望而却步,而超人的智慧使他在赌场赚钱变得如此简单,于是乎这小子再不老老实实读书,而且打着为了上哈佛的医学院才进赌场的幌子,继续进出赌场满足他日益膨胀的欲望,完全是自欺欺人,他开始失去理智,他以为自己是超人,他能掌控一切,结果可想而知,终于为自己的年轻付出代价,正应了中国古人的一句话:“天令其亡,先令其狂。”注意:后面就是女主角
影片虽然是垃圾。但是还给我年轻人一些警示。古希腊人说悲剧能净化心灵,我现在斗胆说一句,烂片能使人深刻。令人匪夷所思的是,《决胜21点》竟然还是北美票房冠军,难道美国人的观影水平跟他们经济一样在衰退?经济下滑是小,品味下降是大。可能布什先生更加关心是GDP。
自己的世界or现实的世界? self-recognition and self-losing.
坚持看完主要是为了故事本身.电影拍的有点烂.
赌场只让人输钱不让人赢钱,不知道真实情况是不是这样子,真是可恶啊!那个车和羊的选择,个人觉得是无聊了,无论是何种说法都是狗屁,因为概率论这玩意你没中那就是0,中了就是100%没有其他中间概率,概率论这玩意是一个人创造出来忽悠另一人的.
依旧很肤浅地为了主角的脸坚持给五星……为毛我就是觉得westerner比easterner散发的荷尔蒙多很多很多很多……噗……等等,擦下鼻血……
佳构作品。情节的起承转合都太在意料之中,甚至最后的报复翻身都可想而知。女主角有点娜塔莉的影子,金黄头发十分好看。男主角性格欠妥,心智易摆。实非良配。
我觉得还蛮好看的,帅哥加美女强强组合“winner winner chicken dinner”
看着最烦的几个好莱坞新生代演员之一Jim Sturgess,还有那个啥海登克里斯滕森,要演技没演技,要内涵没内涵,长相光看着就觉得招人烦。
很简单,最后就是凯文被玩了,然后不用思考21点到底是怎么玩的,因为最后它什么也没讲。
我原以为自己没看懂这部片子在讲什么,看了豆瓣评论后发现原来它什么都没讲。
Jim Sturgess拍前浪 Kevin Spacey死在沙滩上
宅男的价值观如何改变,喜剧结局.关于如何算牌纯粹是一种错误的关于几率观的普及,会让人感到不知所措的吧
没有永恒的朋友和排档,只有永恒的利益,这部影片再一次精辟地诠释了这个道理。什么欣赏、什么对手、什么朋友,在想得到的利益面前,一切都是浮云。当两厢利益发生冲突时,每个人的选择都是保护自己,也许残酷,但也真实。另外,赌的大忌是贪,这点屡试不爽。另外,男主很像《成长的烦恼》里的小本。
这个电影的评论是我见过的最学术的。所以从2星变成3星。
凯文史派西!你能不能正经点儿演个好人!= =!(男主像诺顿!迷倒。。。
我说小吉啊~你能找個戲是不被人揍的么~= =不過在裏面還是各種帥啊~哎喲~青春柔弱大學生什麽的我最愛了~還是水嫩嫩的21年華啊~╮(╯▽╰)╭不過可能是惡老闆看多了有後遺症。一看見KevinSpacey我就想笑~泥煤的
男主长相介于诺顿、吉伦哈尔和托比马奎尔之间。萌!盖章认证的萌!
偷拍揭秘年入500亿“地下赌场”,至今还在开遍全国吃“人血馒头”!https://www.bilibili.com/video/av83765790 → 年轻人千万别碰网贷,这些后果是你无法承受的!https://www.bilibili.com/video/av59094699 → 为什么千万别碰赌博?亲身经历为你揭秘赌博的本质:https://www.bilibili.com/video/av66463567 → 为此而观看《决胜21点》。→ 电影根据马恺文(Jeff Ma)真实故事改编,20世纪90年代他靠着如“英特尔芯片”一般神准的算牌能力,和班上一帮鬼才学生横扫美国各地赌城,狂捞了约1000万美元,各家“大出血”的赌场纷纷通过监视画面将这些算牌人的大头照存盘,建立一份黑名单。从此,马恺文等人成为美国境内近百家赌场“21点”牌桌的“拒绝往来户”。据马恺文介绍:“算牌只能提高3%的赢牌几率……却足以造成很大的差别。”-百度百科
因为原型是亚裔,且长得不帅,所以剧组决定把男主变成白人,并且安排一了一个喜欢小偷小摸的猥琐亚裔角色
Winner Winner Chicken Dinner
骗中骗的故事总能给人带来惊喜。如果单就剧本而言,胜《钢铁侠》好多了!可见imdb上的评分是不能作为衡量影片好坏的依据的,只能参考。